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Reduction factors for strongly coupled orbital triplet 
Jahn-Teller systems: I. T (8 e and T (8 t Jahn-Teller 
systems 

C A Bates and J L Dunn 
Physics Department, The University, Nottingham NG7 2RD,  UK 

Received 19 September 1988 

Abstract. A method of studying strongly coupled Jahn-Teller (JT) systems involving a unitary 
transformation and energy minimisation procedure is used to obtain analytical expressions 
for the first- and second-order JT reduction factors of T C3 e and T $3 t JT systems. The results 
obtained for T @ e JT systems are found to be identical to those of previous calculations. The 
values of the resulting expressions for the first-order reduction factors in T @ t JT systems 
are compared to those of existing numerical calculations. The effect of anisotropy on the 
first-order T 8 t reduction factors will also be investigated. 

1. Introduction 

It is well known that Jahn-Teller (JT) effects in solids can be observed by the reduction 
of some of the electronic parameters appearing in effective Hamiltonians. The reductions 
in first-order terms may be much larger than those in second-order terms, such that 
second-order effects can dominate. Hence it is important to be able to calculate both 
first- and second-order JT reduction factors for such systems. The results are particularly 
useful for the modelling of magnetic impurity ions in semiconductors, which often exhibit 
very strong JT effects (Bates and Stevens 1986; Clerjaud 1985,1986). 

The idea of JT reduction factors was first developed by Ham (1965,1972) and O’Brien 
(1969). Since then, many papers have been published describing both calculations and 
measurements of reduction factors (see Bates (1978) for areview of the early publications 
in this area). Although reduction factors for T @ e JT systems can be calculated ana- 
lytically (Ham 1965), reduction factors for T @ t, T @ (e + t2) and E @ e JT systems can 
only be obtained using approximate methods. Furthermore, second-order reduction 
factors do not appear to have been calculated for either T @ t or T @ (e + t2) JT systems. 

The present authors recently devised a new method for calculating meffects in orbital 
triplets which are strongly coupled to e- and/or t2-type phonon vibrations. The basic 
theory of this method, which involves a unitary transformation and energy minimisation 
procedure, is given in Bates et a1 (1987), together with a detailed analysis of the 
T @ (e + t2) JT system. A second paper (Dunn 1988) presents further information on 
the general method and discusses the T 63 t JT system in detail. The theory was extended 
for both T €3 t and T @ (e + t2) JT systems by adding corrections, which give rise to 
anisotropic effects (Dunn and Bates 1989a). The aim of the present paper is to use the 
unitary transformation method to calculate both first- and second-order JT reduction 
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factors for T C3 e and T C3 t JT systems. It will be shown that the method reproduces 
exactly the well known results for T @ e JT systems. New results for T @ t JT systems will 
be obtained by taking account of the anisotropic corrections. The values of the first- 
order reduction factors both with and without anisotropy will be compared to published 
numerical results. Reduction factors for T @ (e + tz) JT systems are calculated in the 
following paper (Dunn and Bates 1989b). 

Throughout this paper, it will be assumed that the coupling to the weaker of the e- 
and tz-type modes is sufficiently quenched to play no part in the calculations. The results 
presented are for TI ions in Td symmetry, although corresponding results for T2 ions can 
be obtained by appropriate interchanges of the symmetry labels. 

2. Background theory 

The vibronic Hamiltonian ?X for a T, ion in a tetrahedral cluster coupled linearly to the 
e-type displacement modes Q, and Q, and to one set of tz-type modes Q4, Q j  and Q6 
can be written in the form 

"de = %e,", + "dewh (2.1) 
where 

= VE(Q,EB + QeE,) + v~(Q4Tj.z + QsTzx + Q,Txj) 
and 

?X\ ih  = [p:/(2pu,) + h j a ) ; Q , ? I  
i 

P, is the momenta conjugate to Q, and the sum j is taken over the modes 0, E ,  4, 5 and 
6. Also, E,, E,, T,,, T,, and T,) are orbital operators. which can be defined in terms of 
an orbital 1 = 1 by 

VE and VT are the e- and t2-type ion-lattice coupling constants, and the p, are the masses 
and the U, the frequencies of each mode j .  It will be assumed that all ,U, = ,U and that 
w o  = w, = wE and w 4  = w 5  = w 6  = wT. The orbital basis states will be defined to be Ix), 
ly) and / z )  where, in terms of the m,values of an orbital 1 = 1, 

14 = 10) Ix) = -(1/fi)(ll) - 1-1)) ly) = (i /f i)(l l)  + 1-1)). (2.3) 
In the standard JT theories of, for example, Ham (1965), Opik and Pryce (1957) and 

Bersuker and Polinger (1974), the Q, in the Hamiltonian (2.1) are treated as dynamic 
variables. The Hamiltonian is then diagonalised in the adiabatic limit (in which the P, 
terms are neglected), to produce eigenstates of energy E = E(Q,). Values of the Q, are 
then chosen to minimise E .  If the e-type couplings are strongest, there are found to be 
three sets of Q, which minimise E ,  each of which defines a well whose minimum lies 
along a tetragonal axis in Q-space (T C3 e JT effect). If the tz-type couplings are strongest, 
there are four sets of Q,, each of which defines a well along trigonal axes in Q-space 
(T @ t JTeffect). In addition, there are six solutions corresponding to saddle points along 
orthorhombic axes, which can become minima in the presence of quadratic couplings 
(T @ (e + t2) JT effect). 
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There are three orbital states associated with each well, which are multiplied by 
harmonic-oscillator-type functions to produce vibronic phonon states. The states associ- 
ated with the lowest-energy set of wells are good eigenstates of X if the coupling is very 
strong. For weaker couplings, the states localised in the trigonal and orthorhombic 
wells are not orthogonal to each other, and do not have cubic symmetry. However, 
combinations of the states can be taken which are orthogonal and cubic, and can be 
shown to be good eigenstates of X. This splits the degeneracy of the wells, and produces 
a TI triplet ground state and A, singlet excited state for T @ t JT systems and a T1 triplet 
ground state and T2 triplet excited state for T @ (e + t2) JT systems. It is not necessary 
to take cubic combinations of the states for T @ e JT systems. 

The main drawback of the above theories is that the Q, are treated as dynamic 
constants rather than as quantum-mechanical operators. This is overcome in the theory 
of Bates et a1 (1987) by writing the Ql in terms of second-quantised phonon operators. 
A unitary transformation U is then applied to X, where 

U = exp(i 7 a l p , )  (2.4) 

and j is summed over the modes 8, E ,  4,  5 and 6 ,  and the a, are free parameters. The 
transformed Hamiltonian % (= U-’XU)  is then split into three parts, viz. 

% =  %1 + %; f %evlh (2.5) 
where %vlh = xvlb and 
21 = -h[VE(Esae + E F a E )  + VT(TYZa4 + Tzxa5 + T,,a,)] 

+ 4 h2 2 p10,2a; + B c. ho,  
/ ! 

(fori  = 8, E ,  4,5 and 6 ) .  The Hamiltonian is independent of the Q, while %Je; describes 
coupling to excited phonon states. Hence is a good Hamiltonian for determining 
ground states of %. 

is essentially the same as the original untransformed Ham- 
iltonian with Q, = - a,h. The energy of its eigenstates can be minimised to produce wells 
at fixed values of a,, which are equivalent to those obtained previously if the substitution 
Q, = -a,h is made. However, the method has the advantage over standard approaches 
that the Hamiltonian Xvlb can then be included to produce phonon excited states auto- 
matically. For T @ t and T @ (e + t2) JT systems, the vibronic states can then be further 
improved by including Xi via perturbation theory. This gives rise to so-called anisotropic 
effects in a simple manner (Dunn and Bates 1989a). 

Each of the tetragonal wells will be labelled by an index k = 1 to 3 and each of the 
trigonal wells by k = 1 to 4.  The values of the ai for the tetragonal and trigonal wells, 
which will be called are given in the Appendix. The vibronic ground states associated 
with each well will be written in the form lXik); 0), where Xf) is the orbital state and the 
‘0’ indicates that there are no phonon excitations present. The exact forms of the Xik) 
are given in the Appendix, together with the two orbital excited states associated with 
each well, called Xlk) and Xik) .  The corresponding phonon excited states will be written 
in the form /Xik) ;  8P~q4‘5 ’6 ‘ )  (i = 0 , l  or 2), where 8P denotes the presence o f p  &type 
excitations, etc. The excited phonon states have energy ( p  + q)hwE + (Y  + s + t)hw, 
with respect to the ‘zero-phonon’ orbital states. 

The Hamiltonian 
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The states lXlk); 0) and lXjk); O P ~ 4 4 ' 5 ' 6 ' )  are approximate eigenstates of the trans- 
formed Hamiltonian. States appropriate to the untransformed Hamiltonian must be 
obtained by multiplying these states by the unitary transformation U appropriate to the 
well concerned, which will be called U,. The momenta Pi will be written in terms of 
phonon creation and annihilation operators b l  and bj,  such that (Bates et a1 1987) 

The untransformed ground states are written in the form lX!k)f ; 0)  (= Uk IXjk); 0)) etc. 
It should be noted that, as the U,  contain phonon operators, these states now include 
phonon excitations. 

As with previous approaches, the untransformed ground states localised in the 
trigonal and orthorhombic wells are not orthogonal to each other, so cubic combinations 
of them must be constructed that are good eigenstates of 2t (Dunn 1988). The resulting 
cubic states for the T 8 t JT system excluding anisotropy are given in the Appendix. The 
anisotropic states corrected to account for are given in Dunn and Bates (1989a). 

3. Reduction factors for T @ e JT systems 

3.1. First-order reduction factors 

First-order JT reduction factors will be calculated for orbital operators transforming as 
TI ,  T, and E under Td symmetry. The reduction factor for T ,  operators, which will be 
called Ke(T,), can be calculated using the operator I,, for example. The reduction factor 
is then defined by the relation 

Ke(Tl) = (y';  Ol~xlzf; 0)/(YlLld. (3.1) 
The required matrix elements can be evaluated using the techniques and equations of 
Dunn (1988), to show that 

Ke(Tl) = S, ( 3 4  
where Se is the overlap between two tetragonal wells (see Appendix). The reduction 
factor for T2 operators Ke(T2) can be defined in a similar manner and calculated using a 
suitable operator transforming as T, (such as Tyz) .  It can thus be seen that 

K'(T2) = S e .  (3.3) 

Ke(E) = 1. (3.4) 

The E-type reduction operator, calculated using the operator Eo,  is 

As expected, the above results are identical to the exact analytical results of Ham (1965). 

3.2. Second-order reduction factors 

In JT systems, a perturbation Voften has non-zero matrix elements between the vibronic 
ground and excited states. The effect of such contributions may be equated to that of an 
effective Hamiltonian in orbital ( I  = 1) and spin operators acting between purely orbital 
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The sum over 8 and E has been reduced to a sum over one index only by use of the 
relation (Ham 1965) 

(3.12) 

where the sum overp and q excludesp = q = 0. The term in e in X s o  is included to ensure 
that the trace of the Hamiltonian is zero. The expressions obtained for the reduction 
factors are again identical to the exact analytical results of Ham (1965). 

4. Reduction factors for T C3 t JT systems 

4.1. First-order reduction factors 

First-order JT reduction factors for T CG t JT systems can be calculated using similar 
procedures to those used for T C3 e JT systems above, using both the simple states given 
in the Appendix and the more complicated anisotropic states which take account of 
%?;. Without the anisotropic corrections, it is found that 

K'(E) = K'(T,) = 9 N$,S, and K'(T2) = fN$, (1 + S,) (4.1) 
where NTt is the normalisation factor for the cubic T, states defined in the Appendix. 
There is a non-zero matrix element between the TI ground and the A2 tunnelling states, 
namely 

(A2 IT2 IT,) = tNnNAt(1 - St). (4.2) 
The coupling between the states will not be expressed in terms of a reduction factor 
because the A 2  state cannot be modelled by an effective Hamiltonian within I = 1. 
However, the matrix element can be of significance when considering the effect of non- 
cubic perturbations such as strain. If the calculations are performed using the anisotropic 
states of Dunn and Bates (1989a), it is found that 

K'(T1) = 9 N$,S,(l - f l )  

K'(T2) = $Ar$:[(1 - f 2 )  + S:(1 - f 3 ) ]  

K'(E) = 9 X$St( l  -f j) 

and 

where 
(4 .3)  

(4.4) 

f l  = &(l - ~ ) [ 5  + Y x + 16/(1 + X) - 2 / ~ ]  

f 2  = i X ( 1  - X) 

f 3 = - & ( 1 - ~ ) [ - 1 5 -  9 ~ + 3 2 / ( 1 + ~ ) + 1 8 / ~ ]  

f 4  = &(l - x)[+ + Y x + 16/(1 + X) - 2 / ~ ]  

with 

X = 1 - ~ E T / ( ~ E T  + no,) 
where ET is the JT energy defined in the Appendix. dArTt and JVA: are the normalisation 
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Figure 1. Variation of the first-order reduction factors k ( E ) ,  R(T,), IC(T,) and (A2 1 Tz 1 T,) 
as a function of KT/hoT.  The long broken curves (- -) are the results for the cal- 
culations without anisotropy and the full curves (-) with anistropy. The short broken 
curves (- - - -) are the numerical results of Caner and Englman (1966). 

factors for the anisotropic T1 and A2 states, respectively, whose values can be obtained 
by replacing S, by Y ,  in the definitions (A.11), where (Dunn and Bates 1989a) 

Y, = S,{1 + &(1 - x)[2 - 1 7 ~  + 64/(1 + X) + l/x]} (4.5) 
(to order S in perturbation theory). 

The above results have been expressed in terms of the variable x because x+ 0 in the 
infinite-coupling limit. It is thus easy to see that K ' ( E )  and K'(T,) + 0 and Kt(T2) and 
(A2 1 T, I TI) + 3 in this limit. These results agree with the well known results of, for 
example, Lister and O'Brien (1984). If the coupling is slightly less strong, 

K'(T2)  = (A2 1 T, 1 T I )  = $( 1 - 3f2) (4.6) 
with anisotropy, showing that the limit of 3 for K(T,) is approached from below. This 
deviation has only previously been observed using numerical methods (Caner and 
Englman 1966, Sakamoto 1984). Even though the transformation method is only strictly 
valid in regions of strong coupling, it can be shown that the reduction factors tend to the 
correct limits in zero coupling. It is thus reasonable to assume that they are good over 
all coupling strengths. 

It is useful to plot the variation of the above reduction factors as a function of 
K,/ho,. Figure 1 shows the variation of both the simple and anisotropic expressions for 
the three reduction factors and the matrix element (A2 1 T, I Tl). The results of Caner and 
Englman (1966) have also been reproduced. It can be seen that the agreement between 
our results and those of Caner and Englman is generally good, especially when the 
anisotropic corrections are included. However, Caner and Englman obtain a significant 
splitting between R(T1)  and R ( E )  in moderate coupling, whereas our method gives 
only a very small splitting (to order a2  in perturbation theory). Group-theoretical 
calculations (Leung and Kleiner 1974) and symmetry considerations (Sakamoto and 
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Muramatsu 1978) predict a splitting between the two reduction factors, although the 
magnitude of the splitting is not known. 

Our expressions for the reduction factors do not resemble those given by Ham (1965) , 
which were calculated in weak coupling and then extrapolated to stronger couplings. 
Further discussions on the validity of Ham's results are given by Bersuker (1984) and 
Bersuker and Polinger (1983,1984). 

Leung and Kleiner (1974) used group theory to show that there is a relation between 
the three first-order reduction factors for this system, viz. 

K'(E) + q[Kt(T,) - K'(T,)] = 1 - 3f(T,) (4.7) 
wheref(T,) is small and positive. Our expressions satisfy this condition, withf(T,) = 0 
in the absence of anisotropy and 

f(T1) = &"(1 - X ) [ X  - & S,(-28 + 4 5 ~  + 6 4 / ~ ) ]  ( 4 4  
when anisotropic corrections are included. 

4.2. Second-order reduction factors 

The calculation of second-order reduction factors for spin-orbit coupling in T 8 t JT 
systems proceeds exactly as in 5 3.2 for the T 8 e JT problem. The reduction factors will 
be calculated assuming no anisotropyin the cubic states, owing to the difficulties involved 
in obtaining a full set of anisotropic excited states. The A2  tunnelling state takes no part 
in the calculations as it is coupled to the TI states by a T, operator only. Po is now the 
projection operator for the states IT@), ITlyt) and IT@) defined by equation (A.lO). 
For simplicity, the P, are constructed from the set of excited phonon states la'; 4T6'), 
ib'; 4'5'6'), I C ' ;  4'5"') and Id'; 4'5'6'), rather than from fully cubic states. This approxi- 
mation will be good in strong coupling, where the overlap between the states is small. 

It is necessary to evaluate matrix elements such as 

(Xi0 ' ; 0 11. S 1 Xik) ' ; 4r55 6') (4.9) 
which is a product of the electronic matrix element 

(xi0 I ~ . S I X ~ ) )  = (i/3)[(0ik)40 - O&~)O' , " )S~  

+ ( O p O y -  O p O p ) S r  + ( O y ' o p  - O p O p ) S * ]  (4.10) 

and the oscillator matrix element 

(01 U: U k  14'5$6') = S , ( D k k ' ) ) r ( D ~ k i ) ) s ( D ~ k ) ) ' / ( r ! S ! t ! ) 1 / 2 .  (4.11) 

An appropriate combination of the (Xt)'; 01 vectors must then be taken to form 
(T,xt 11. S 1Xkk)'; 4'5S6'),etc. Combinationsofthematrixelementsmust thenbesummed 
over r ,  s and t to cover all excited states. After much algebraic manipulation, it is found 
that the spin-orbit coupling may again be described by the effective Hamiltonian (3.8). 
There are two possible solutions for y ,  b ,  c, d and e .  

In the first solution, y contains the first-order reduction factor contribution only, i.e. 
y = IC(T,). The other paraneters are defined by 

b = -4N& f H c = o  d = e = Ntt(f ;  - f ' , )  (4.12) 

where f H  andf', are the second-order reduction factors 
f ' a  = 7 S?H,(Y)  and f ' b  = 9 S!H,(2Y) (4.13) 
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K T / h J ,  

Figure 2. Variation of the second-order factors hwrN+J: and hw,Ni , fb  as a function of 
K,/hw,. The first-order reduction factors K'(T,) and K'(E) have also been reproduced. 

with Y = 9 ( K , / h o ~ , ) ~  and HT(Z)  defined by (3.11). Again, use has been made of the 
condition (3.12) to reduce the reduction factors to sums over one index. 

In the second solution, y is a combination of both first- and second-order terms, such 
that 

Y = K'(T1) + M ( f :  -fL) 
b = -2N+,(fH + f b )  c = -4e = -$N+,( f :  - f b )  d =  0. (4.14) 
As for T 8 e JT systems, the terms in e in both forms of the effective Hamiltonian ensure 
that the trace of X s o  is zero. 

Figure 2 shows the variation of hw,N;, f : and hw,N+,fb, as a function of K,/hw,. 
The first-order anisotropic reduction factors IC(Tl) and P (E)  have also been repro- 
duced. As A - hw,  it is clear that AN+tfb is significantly larger than P ( T J  in strong 
coupling. Hence it is very important to include second-order terms when modelling 
specific strongly coupled JT systems by effective Hamiltonians. In particular, it can be 
seen that systems with a positive isomorphic constant can have a negative y with the 
second choice of parameters (4.14). (Note that contributions from excited orbital states 
such as those occurring in crystal-field theory must also be added to (3 .S) when modelling 
experimental results.) 

Two second-order reduction factors appear in Xsofor bothT 8 e andT 8 t JTsystems. 
The constant term and the term in ( E .  S ) 2  are also involved in both systems. However, 
with the first choice of parameters, only the E-type quadratic operators are involved in 
T 8 e JT systems and only the T2-type quadratic operators in T 8 t JT systems. 

5. Discussion 

It is not always a straightforward matter to distinguish between real T 8 e and T 8 t JT 
systems from an examination of experimental data. The first-order TI reduction factors 
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for both sytems vary exponentially with the strength of the dominant type of coupling, 
so that it is difficult to use them to distinguish between the two systems. With the second 
form of effective Hamiltonian above (4.14), the coefficient y of A1.S is always positive 
for T €3 e and T €3 (e + t z )  JT systems, but is negative for T €3 t JT systems in strong 
coupling (Dunn and Bates 1989b). This allows the T €3 t JT system to be identified in 
certain cases. 

One of the best ways of distinguishing between the three different orbital triplet JT 
systems is to apply an external perturbation, such as uniaxial stress along both the two- 
and threefold cluster axes. However, this identification is again not straightforward 
(Dunn and Bates 1988). Finite couplings to t, modes in T €3 e JT systems and to e modes 
in T €3 t JT systems cause further difficulties in these identifications. 

6. Conclusions 

The transformation method recently developed by the present authors has been 
extended to calculate both first- and second-order JT reduction factors for T €3 e and 
T €3 trrsystems. AlthoughtheresultsforT €3 eJTSyStemSarewellknown, thecalculation 
was repeated to provide a useful check on the validity of the method. As expected, it 
was shown that the approach gives identical results to those of the exact analytical 
methods. First-order reduction factors forT €3 t JTsystems were also calculated including 
so-called anisotropic effects via the addition of %; using perturbation theory. It was 
shown that the results obtained are close to those of previous numerical calculations 
over all ranges of coupling strengths. The main difference between the results is that we 
obtain only a very small splitting between the E- and TI-type reduction factors. Work is 
currently in progress to determine if higher-order corrections will produce a larger 
splitting. 

Second-order reduction factors were calculated using states localised in the wells as 
excited states and the simple isotropic cubic ground states. As far as the authors are 
aware, these reduction factors have not been calculated analytically before. The cal- 
culations are currently being repeated using cubic excited states. The effect of anisotropy 
on the second-order reduction factors can also be investigated. 

Some years ago, one of the present authors (CAB) was involved in developing an 
alternative transformation method for T €3 e JT systems (Bates et a1 1974). The method 
was different to that discussed here in that the transformation included orbital operators 
(Bates 1978). The present method is found to be sjmpler to operate than the previous 
method, and has the considerable advantage of being able to accommodate couplings 
to t2  modes without difficulty (although this is not discussed here). The present method 
also applies to all three JT systems, while the original does not. 

In the following paper (Dunn and Bates 1989b), first- and second-order reduction 
factors will be calculated for T C3 (e + t2) JT systems. 
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Appendix. Results for the tetragonal and trigonal wells 

The unitary transformation method of Bates et a1 (1987) and Dunn (1988) predicts 
energy wells of tetragonal, trigonal and orthorhombic symmetries, whose minima are at 
positions - ajkjh in phonon-coordinate space, where 

The values of n,?) for each of the tetragonal and trigonal wells are given below, together 
with the energies of the wells and the states localised in them. Results for the cubic 
tunnelling states of T G3 t JT systems are also given. 

a y  = - (V,/h/LW;)njk). (A. 1) 

The energy of the minima is the JT energy -EE, where 

EE = 4 K i / h W ~  and KE = - VE ( f 2 / 8 / L W ~ ) ” * .  (A.3) 

The three orbital states in each well have: 

xy = z Xi” = x and xi” = y  

Xh” = x Xi” = y and Xi” 2 (A.4) 

xi31 = y Xi31 = z and x53) = x 

where the excited states lXikj; 0 )  and 1Xik); 0) are degenerate with each other and are 
3EE above the ground states. The oscillator overlap between any two of these wells is 

se = exp[-6(KE/hoE)2]. ( A 3  

Results for T C3 t J T  systems 

The trigonal wells have nbk) = nik) = 0 and n,?) = ( l/V‘;)Ojk) for j = 4,5  and 6, where 
oy) = = - (1) = 1 = 0$3) = ( 4 3 )  = 1 

# = = - ( 2 )  = -Oy) = a y )  = = 1 

E T  = 4K?f/3hLO~ and KT = V T ( 3 h / 8 ~ ~ T ) ” 2 .  (‘4.7) 

( A 4  

(A. 6) 
O6 

O6 

The energies of the minima of the wells are -ET, where 

The ground states in the wells have 

xik) = ( l / V ‘ ; ) ( O $ k ) X  + o y y  + O p z ) .  

For simplicity, the notation Xf) = a, X f j  = b ,  Xi3) = c and X f j  = d is used to label the 
four wells. The degenerate excited states in each well, which have energy 3ET relative 
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to the ground states, are 

Xik) = ( l / f i ) ( -o ik ’x  + a ik ’ y )  (A.9) 
Cubic tunnelling states for this system consist of a T I  triplet and A2 singlet for TI ions. 
The z-type component of the triplet and the singlet states are ( D u m  1988) 

Xik) = (l/fi)(a!f) + aSk)y - 2oik)z).  

/Tlzt}  = NTt(- l a ‘ ;  0} + ib’; 0) + IC’;  0) - Id’; 0)) 

lA2t) = NAt( la ‘ ;  O} + Ib’; 0) + IC’;  0) + Id’; 0)) 
(A.lO) 

where 

1 = 4N&(1 + as,) and 1 = 4N;,(1 - S,)  (A.l l )  

and St is the oscillator overlap between any two of the trigonal wells, which can be 
evaluated to (Dunn 1988) 

(A. 12) 

The x- and y-type states of the triplet can be found from the above by cyclically inter- 
changing x, y and z .  The energies of the triplet and singlet are (Dunn 1988) 

ETt = 4N?t(Elt(Elt - StE2t) and E A t  = 4Nit(E11+ 3StE20 (A.13) 

where 

St = exp[- ? ( K , / ~ u , ) ~ ] .  

El,  = (a ’ ;  O / x l a ’ ;  0) = - E T  + 4hUT 
(A.14) 

E z ~  = ( l / s , ) ( U ’ ;  Ol%lb’; 0) = $ET - t h w ~ .  
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